Mars and Its Mystery

Mars and Its Mystery

Edward Sylvester Morse
Edward Sylvester Morse

Author: Morse, Edward Sylvester, 1838-1925
Mars (Planet)
Mars and Its Mystery
Cover created by Transcriber, using an illustration from the original book, and placed in the Public Domain.


LOWELL’S GLOBE OF MARS, 1903. Frontispiece

Member National Academy of Sciences
Author of “Japanese Homes and their Surroundings,”
“Glimpses of China and Chinese Homes,” etc.

Copyright, 1906,
By Little, Brown, and Company.

All rights reserved

Published October, 1906



The following pages have been written for the general reader. The controversies over the interpretation of the curious markings of Mars and the wide divergence of opinion as to their nature first turned my attention to the matter. The question of intelligence in other worlds is of perennial interest to everyone, and that question may possibly be settled by an unprejudiced study of our neighboring planet Mars. Knowing the many analogies between Mars and the Earth, we are justified in asking what conditions really exist in Mars. Instead of flouting at every attempt to interpret the various and complicated markings of its surface, we should soberly consider any rational explanation of these enigmas from the postulate that the two spheres, so near together in space, cannot be so far apart physically, and from the fact that as intelligence is broadly modifying the appearance of the surface of the Earth, a similar intelligence may also be marking the face of Mars.
A student familiar with a general knowledge of the heavens, a fair acquaintance with the surface features of the Earth, with an appreciation of the doctrine of probabilities, and capable of estimating the value of evidence, is quite as well equipped to examine and discuss the nature of the markings of Mars as the astronomer. If, furthermore, he is gifted with imagination and is free from all prejudice in the matter, he may have a slight advantage. Astronomers are probably the most exact of all students as to their facts, and in this discussion there is no attempt to introduce evidence they do not supply, as the frequent quotations from their writings will show.
Having studied Mars through nearly one presentation of the planet with the great refractor at the Lowell Observatory, what I saw with my own eyes, uninfluenced by what others saw, will be presented in a short chapter at the end of this book.
I wish to express my obligations to Professor Percival Lowell for the privileges of his observatory, for many of the illustrations in this book, and for his unbounded hospitality during my visit to Flagstaff. I am also deeply indebted to Mr. Russell Robb for valuable assistance during the preparation of the manuscript.
E. S. M.
Salem, Massachusetts,
October, 1906.


I. Introduction 1
II. Immeasurable Distances of Space 7
III. Other Worlds Inhabited 14
IV. Lowell’s Book on Mars 31
V. Testimony of Astronomers 51
VI. The Study of Planetary Markings 70
VII. Difficulties of Seeing 79
VIII. Variation in Drawing 94
IX. Theories Regarding the Canals 100
X. Comments and Criticism 125
XI. Atmosphere and Moisture 134
XII. Notes on Irrigation 141
XIII. Variety of Conditions under which Life Exists 147
XIV. My Own Work 158
XV. What the Martians Might Say of Us 166
XVI. Schiaparelli, Lowell, Perrotin, Thollon 172
XVII. Last Words 180
  Index 189


Lowell’s Globe of Mars Frontispiece
Fig. 1. Planisphere of Earth Page 61
I. Tobacco Cultivation under Cloth, Porto Rico Page 50
II. Drawings of Solar Corona 96
III. Chinese Bowl, showing Crackle 107
IV. Mud Cracks on Shore of Roger’s Lake, Arizona 108
V. Natural Lines, Cracks, Fissures, etc. 112
VI. Artificial Lines, Railways, Streets, Canals, etc. 113
VII. Dome of Lowell Observatory, Flagstaff, Arizona 158
VIII. Twenty-four Inch Telescope, Lowell Observatory 160
IX. Drawings of Canals of Mars by the Author 162
Giovanni Virginio Schiaparelli Page 172
Percival Lowell 174
Henri Perrotin 176
M. Thollon 178

Life not wholly unlike that on the earth may therefore exist upon Mars for anything we know to the contrary.
Simon Newcomb.



Had some one asked, fifty years ago, Is the Sun composed of chemical elements with which we are familiar? Shall we ever know? the question would not have been deemed worthy of a second thought. Realizing what has been accomplished, not only regarding the constitution of the Sun, but of the most remote stars, we are encouraged to ask: Is Mars inhabited? Shall we ever know? To what groups of students are we to appeal for an answer? If we want to know the diameter of Mars, its weight, the form of its orbit, the inclination of its axis, the period of its revolution around the Sun, and its rotation period, its ephemeris and its albedo, we ask the astronomer, for he has the instruments with which to observe and measure, and the mathematical knowledge necessary to reduce the measurements. If Mars were incandescent, we should appeal to the astrophysicist for information regarding its chemical composition. If, however, we want to know the probability of Mars being the abode of life, we should appeal to one who is familiar with the conditions of life upon our own globe. If the question is asked as to the existence of intelligence on the planet, we endeavor to trace evidences of its surface markings, and their character, whether natural or artificial. Knowing how profoundly man has changed the appearance of the surface features of our own globe in the removal of vast forests, in the irrigation of enormous tracts of sterile plain, the filling up of certain areas, like Peking, Tokio, London, with material having a different reflecting surface, we are to scan the surface of Mars for similar modifications, and for an answer ask those who are familiar with physical geography, with meteorology, with geology, including the character of natural cracks or crannies, deep cañon, or range of mountains, or any of the great cataclysms which have scarred the face of the Earth. Taking the great mass of facts as they are presented to us by astronomers, to what class are we to appeal as to the probability of life in other worlds? What class will form the most rational conclusions? Will it be the circle-squarers, perpetual-motion cranks, spiritualists, survivals of a past who believe the world is flat, those who have “anthropomorphic conceptions of the Supreme” and Hebraic conceptions of the origin of things, or will it be those who value observation and experiment, who appreciate the importance of large numbers, and who are endowed with a tithe of imagination? Most certainly the latter class.
In approaching the interpretation of the markings of Mars we should first glance at a brief historical summary of what has already been done. We should examine the testimony of those who have seen and drawn the canals; we are then better prepared to examine the records of the latest observations and the explanation of their nature. In the meantime an inquiry must be made as to whether the mathematical astronomer, after all, is best fitted to judge of the surface features of a planet. Next we should take up in the following order the evidences, which are overwhelming, that a network of lines, geodetic in their character, mark the surface of Mars. It has been claimed that these lines show the result of irrigation, and, therefore, the irrigation features of our own planet should be examined. It has been objected that many astronomers have not been able to see the markings, and consequently their existence has been doubted. It will then be proper to point out that the difficulties of seeing are very great, and that the acutest eyesight, coupled with long practice, is necessary to recognize the markings. It has been objected that the drawings of the minuter details of Mars vary with different observers. It will be necessary to show that every kind of research employing graphic representation labors under the same difficulty, and none more so than astronomy. It has been objected that there is not sufficient moisture and atmosphere in Mars to sustain life, and this must be answered by those only who are familiar with conditions affecting life on our own planet.
Various theories have been advanced, some of them physical, to explain the markings of Mars, and these must be considered, and, if possible, answered. Comments and criticism are difficult to repress, as the discoveries of Schiaparelli and the additional discoveries and deductions of Lowell have evoked discussions, which, in some instances, have been harsh and unreasonable, and, in one case, positively ridiculous. Schiaparelli has been called an impostor, and Lowell has come in for his full share of vituperation and innuendo. If this portion of the discussion is considered unparliamentary, the attitude and language of certain astronomers have provoked it.
A brief account is presented of what the author was enabled to draw of the Martian details, with a transcript of his notes made at the time of observation, and finally a little imaginary sketch is given as to how the world would look from Mars; and if similar kinds of astronomers existed there, what comments and objections they might offer as to the inhabitability of the Earth.
Such flights of the imagination are justified in that it gives one a chance to appreciate the weakness of some of the arguments urged against the idea of intelligence in Mars.
It will be objected that some of the names herein quoted are not recognized as astronomers. I can only say that in every instance I have found references to the writings and essays of those that might be objected to in the pages of the “Observatory,” and other reputable astronomical journals, and in no instances accompanied by adverse comment or criticism. If astronomers​—​even the distinguished Schiaparelli​—​quote these names in scientific memoirs, I may venture to do the same in a book written for the general reader. The objection, however, has always presented itself with every controversy; it was conspicuously marked in the passionate discussions over Darwin’s “Origin of Species.” The intelligent laity recognized the truth of Darwin’s proposition long before the zoölogist began to waver. Essays by the unprofessional supporting Darwin’s contention were discredited because the writers were not trained naturalists. The history of invention is crowded with instances where devices and processes have been invented by men whose trades or professions were the least likely to enable them to originate such ideas.


It is therefore perfectly reasonable to suppose that beings not only animated but endowed with reason inhabit countless worlds in space.
Simon Newcomb.

Until within recent centuries, man has not only believed that he and his kind were the only intelligent creatures in the universe, but that the little round ball on which he lived was the dominant part thereof. So rooted for ages was this conviction that it became fixed in man’s mental structure, and hence the survival of the idea that still lingers in the minds of a few to-day. The conclusion was natural, however, for the behavior of the starry heavens and the Sun and the Moon seemed sufficient evidence that man, and the surface upon which he lived, was the centre of the universe. The stars were bright points of light, the Moon a silver disk, and the Sun a heat and light giving ball of fire, equally diminutive and not far away. Let one realize for a moment the experience of these early people. Everything aerial, with the exception of feathery birds, fluffy bats and flying insects, was composed of the lightest particles​—​cottony seeds, reluctantly falling snow-flakes, motes in the air, smoke and vaporous cloud, and, in contrast, the rock-foundationed and irregular surface upon which the people dwelt, and flat as far as man had reached. What wonder, then, that man viewed these brilliant points and dazzling disks as objects of no great size and not far away, hauled across the heavens by unseen spirits of some kind. The marvel of it all is, not that they believed as they did, but that any other views of cosmography could have been established. And yet the successive increments of astronomical knowledge, founded apparently on the soundest mathematics, were adopted in their turn. What more convincing than the epicyclic theory of Ptolemy, buttressed by figures so ingenious and convincing, that the theory might have lasted till now except for the truer understanding of planetary movements in relation to that of the Earth? All through this history are found traces of the barriers erected by prejudiced conservatives, of which the attitude of Tycho Brahe is a good example, though in this case it was probably his belief in the Hebraic conception of the universe which excited his opposition to Kepler’s views, a conception which, unfortunately for the progress of astronomical research, still lingers among certain observers to-day and places them in precisely the same category with Tycho Brahe.
With the gradual accumulation of knowledge it was found that of all the innumerable illuminated bodies in the heavens, only one,​—​just one,​—​the Moon, revolved around the Earth, and that the Earth instead of being all dominant in the affairs of the universe, played a very minor part, and, instead of being master, was a very humble midget revolving around the Sun; that, indeed, with the exception of the Moon, there were visible to the naked eye only three bright points of light in the whole range of the heavens more insignificant in size,​—​Mercury, Venus, and Mars,​—​while the other planets were vastly larger, and had many more satellites revolving around them. Then it was found that, with the exception of the few planets, the myriad stars had no connection with the Sun whatsoever, that the Sun was no longer the centre of a great universe. Later it was discovered through spectroscopic analysis that all the myriad of stars were composed of chemical elements similar to our Sun. Here, then, was the startling revelation that our Sun was simply a star, and that the stars represented a “universe of Suns,” and, if we could get near any one star of the millions that sparkle in the heavens telescopically, we should see it as a round ball emitting light and heat. It was perhaps humiliating to find that our Sun was so insignificant in size that from Sirius, for example, it could not be seen with the naked eye, so small indeed that in the close companionship of other stars it would be swallowed up by their greater size and brilliancy.
To assume, then, that our Sun, so identical to the stars in heat and light emitting properties, was the only Sun that had revolving around it a few minute balls, would be as absurd as if one should go on a pebbly beach, extending from Labrador to Florida for example, and picking up a single pebble, should have the hardihood to assert that this pebble was the only one, among the millions of pebbles, upon which would be found the bits of seaweed and little snails which it might support. The overwhelming vastness of the universe is entirely beyond the grasp of the human mind. The mere statement that it requires so many years for the light to reach us from a certain star, the parallax of which has been rudely established, affo

Download This eBook
This book is available for free download!


普人特福的博客cnzz&51la for wordpress,cnzz for wordpress,51la for wordpress
Mars and Its Mystery
Free Download
Free Book